Главная ВАЗ Двигатель Печка Глохнет

Имя: ( регистрация? ) Пароль ( забыл? ):

Главная Новости

Насос-дозатор рулевых гидравлических систем

Опубликовано: 30.09.2018

Любая колесная машина требует качественной и рациональной системы рулевого управления. Современные рулевые механизмы во многом похожи друг на друга. Принципиальная структурная гидросхема мобильной машины содержит три основных контура – гидростатическую трансмиссию хода, гидропривод рабочих органов, тормозную и рулевую гидросистемы.

Как правило, рулевую и тормозную системы питает один гидронасос. В зависимости от команды оператора и воздействия на машину внешних сил сопротивления приоритетный клапан автоматически делит и направляет потоки рабочей жидкости в соответствующие упомянутые гидравлические контуры.

Рис. 1. Схема рулевого управления строительной спецтехники

Типовая система рулевого управления (рис. 1) содержит героторный (планетарный) насос-дозатор (гидроруль), который механически соединен с рулевым колесом, блок клапанов (антишоковых и антикавитационных), а также и исполнительные гидроцилиндры. Поток рабочей жидкости от питающего насоса поступает в рулевую систему через приоритетный клапан.

Рис. 2. Типовые конструкции компонентов рулевого управления

На рис. 2 приведены иллюстрации типовых конструкций главных гидрокомпонентов рулевого управления – приоритетного клапана (а), блока клапанов (б) и насоса-дозатора (в). Принципиальная схема на рис. 3 показывает типовую нереактивную рулевую систему с открытым центром.

Рис. 3. Типовая нереактивная рулевая система с открытым центром

Здесь сила реакции (со стороны грунта) при повороте колес не передается на рулевое колесо машины. Поток от насоса с постоянным рабочим объемом свободно проходит через гидроруль и возвращается в гидробак, когда рулевое колесо находится в нейтральной позиции.

Поворот рулевого колеса открывает вращающийся золотник внутри насоса-дозатора, и гидравлическая жидкость от питающего насоса с постоянным рабочим объемом поступает в полости исполнительных гидроцилиндров. Колеса машины поворачиваются. Из противоположных полостей гидроцилиндров рабочая жидкость, проходя через гидроруль, направляется на слив в гидробак.

При повороте рулевого колеса насос-дозатор обеспечивает поступление определенного (фиксированной порции) расхода рабочей жидкости в гидроцилиндры рулевой системы. Величина этого расхода зависит от значения угла поворота внутренней пары золотник-втулка (т.е. рулевого колеса) и рабочего объема гидроруля.

 

Исполнительные гидроцилиндры поворачивают колеса машины также строго на определенный угол, пропорциональный величине фиксированного расхода. Угол поворота колес машины строго пропорционален углу поворота рулевого колеса.

Если при движении колеса машины подвергаются воздействию внешней силы, вступает в работу система защиты от перегрузок. Как видно из схемы, рулевой механизм (насос-дозатор) находится в нейтральном положении и рабочие каналы, ведущие в исполнительные гидроцилиндры, закрыты.

При воздействии на колеса внешней силы в рабочем контуре исполнительных гидроцилиндров растет давление. Как только это давление превысит значения настройки антишоковых клапанов, они откроются и пропустят часть рабочей жидкости из нагруженных полостей рулевых гидроцилиндров в сливную гидролинию.

Поршни гидроцилиндров переместятся на небольшую величину, и в противоположных полостях возникнет разряжение рабочей жидкости, которое приводит к негативным явлениям кавитации.

Однако в этот момент автоматически открываются антикавитационные (подпиточные) клапаны и компенсируют недостаток рабочей жидкости, направляя ее из сливной линии в соответствующие полости гидроцилиндров рулевого управления.

Чтобы улучшить общую работу рулевого управления, вводится гидросистема, нечувствительная к внешним нагрузкам. Это LS (Loadsensing) система. По сравнению с общепринятыми (традиционными) гидросхемами LS система постоянно сравнивает изменение расхода и давления при работе машины и обеспечивает минимальные потери энергии. LS система и планетарный насос-дозатор используются в соединении с приоритетным регулятором потока.

Рис. 4. Схема приоритетного клапана

На рис. 4 показана принципиальная схема приоритетного клапана. Он выполняет функцию делителя и регулятора потока от питающего насоса в рулевой и тормозной контуры гидросистемы.

Здесь р – входной канал приоритетного клапана, к которому подводится рабочий поток от питающего насоса; канал РС питает рабочей жидкостью рулевую систему машины, канал ТС – линия вторичного контура тормозной системы; рр – линия управления (пилотное давление).

Жесткость пружины, прижимающей золотник приоритетного клапана, соответствует давлению управления рр = 0,4; 0,7 или 1,0 МПа. Рассмотрим работу приоритетного клапана в гидросистеме.

Рис. 5. Схема рулевого контура в исходном положении

На рис. 5 представлена схема рулевого контура в исходном положении. Питающий насос не работает, рабочее давление р и управляющее рр равны нулю, линия LS соединена со сливом, рабочие каналы А и В рулевых гидроцилиндров заперты.

В этом случае золотник приоритетного клапана под действием пружины находится в верхнем положении и своими каналами соединяет линию от питающего насоса с гидрорулем гидравлической системы. Тормозной контур отключен от питающего насоса.

Когда машина движется прямолинейно, рулевое колесо и, соответственно, насос-дозатор находятся в нейтральном положении. Линия нагнетания р заблокирована, канал LS соединен со сливом. При работающем насосе золотник под действием управляющего давления рр опускается вниз, преодолевая сопротивление пружины.

Поток рабочей жидкости направляется в линию ТС к тормозному контуру. Однако линия нагнетания р через дроссель в золотнике приоритетного клапана соединена с питающим насосом, т.е. в линии РС рабочая жидкость находится под давлением.

Это необходимо для формирования управляющего сигнала рр и приведения рулевой системы в работу с минимальным запаздыванием по времени. При повороте рулевого колеса насос-дозатор открывает путь рабочей жидкости от питающего насоса в соответствующие полости А гидроцилиндров. Их противоположные полости В соединяются со сливом.

Давление р в линии РС падает, уровень управляющего сигнала рр становится меньше, и золотник приоритетного клапана под действием пружины начинает подниматься. Одновременно часть рабочего потока поступает в канал LS и через дроссель управления подводится в подпружиненную торцевую полость золотника приоритетного клапана.

Эти процессы вызывают устойчивое перемещение золотника в условиях модуляции (высокочастотных колебаний давления), сбалансированного давлением управления рр от РС линии с одной стороны и с противоположной – давлением в полостях рулевых цилиндров и силой пружины.

В результате перепад давлений через гидроруль равен значению настройки пружины приоритетного золотника. Поэтому Δр = рр – LS = р1 – р2. На данной ступени приоритетный клапан становится регулятором давления для насоса-дозатора, формируя управление потоком с помощью РЕГУЛИРОВАНИЯ давления.

Это гарантирует постоянное значение расхода, поступающего в гидроцилиндры поворота колес, независимо от изменения действующих на них внешних сил. Поворот рулевого колеса немедленно изменяет соединения каналов внутри вращающейся золотниковой пары насоса-дозатора.

Увеличение угла его поворота повышает рабочий объем гидроруля и гарантирует поступление требуемого объема рабочей жидкости в исполнительные гидроцилиндры, чтобы повернуть колеса на заданную величину. Обычно диапазон угла поворота вращающегося золотника гидроруля составляет от 0 до 15°.

Рис. 6. Схема соединения каналов при повороте рулевого колеса

Схема на рис. 6 иллюстрирует это действие. При повороте рулевого колеса давление р1 и р2 растет в результате увеличения нагрузки в рабочих полостях исполнительных гидроцилиндров. Однако разница давлений благодаря LS каналу с дросселем управления не зависит от ее величины.

Золотник приоритетного клапана находится в рабочей позиции, строго дозируя необходимый расход, который требует рулевая система. Остаток рабочей жидкости направляется в контур тормозной системы.

Если давление р2 в рабочих полостях гидроцилиндров растет, а в LS канале оно достигает 15,0 МПа, предохранительный клапан в этом контуре откроется. Но с ростом давления р2 увеличивается также давление р1 и, соответственно, давление управления рр.

Оно начинает сильнее сжимать пружину и опускать золотник приоритетного клапана вниз. Это действие заставляет увеличить расход рабочей жидкости в тормозной контур. На практике это означает следующее. Если машина испытывает большое сопротивление при повороте колес или они достигли своего крайнего углового положения, то при нажатии оператора на педаль эффективно сработает система торможения.

Здесь мы рассмотрели наиболее принципиальные вопросы работы рулевых систем гидрофицированных колесных машин, к которым относятся автогрейдеры, фронтальные погрузчики, лесозаготовительная, сельскохозяйственная и другая спецтехника.

Развитие гидравлической техники позволило создать совершенные системы управления, которые выпускаются известными компаниями. Особенности конструкции таких систем описаны в литературе производителей.

 







Навигация
Реклама
Популярное


    '; $CONTENT_m .= '
    '.$a['title'].'

    '.prevlen11($a["preview"],300).'


    ';if (++$ibr >=10) break;}echo $CONTENT_m;?>
Опрос
Облако тегов


Архив


rss